Researcher ID: http://www.researcherid.com/rid/A-1518-2009
Colgate undergraduate advisee
Colgate Postdoctoral advisee

[58] Schuur, E. A. G., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., … Turetsky, M. 2022. Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic. Annual Review of Environment and Resources, 47(1), 343–371. https://doi.org/10.1146/annurev-environ-012220-011847

[57] Kropp, H., Loranty, M. M., Rutter, N., Fletcher, C. G., Derksen, C., Mudryk, L., & Todt, M. 2022. Are vegetation influences on Arctic–boreal snow melt rates detectable across the Northern Hemisphere? Environmental Research Letters, 17(10), 104010. https://doi.org/10.1088/1748-9326/ac8fa7

[56] Webb, E. E., Liljedahl, A. K., Cordeiro, J. A., Loranty, M. M., Witharana, C., & Lichstein, J. W. 2022. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nature Climate Change, 841–846. https://doi.org/10.1038/s41558-022-01455-w

[55] Loranty, M. M. 2022. Thermal bridging by Arctic shrubs. Nature Geoscience. 15, 515-516 https://doi.org/10.1038/s41561-022-00977-4

[54] Abbott, B. W., Brown, M., Carey, J. C., Ernakovich, J., Frederick, J. M., Guo, L., Hugelius, G., Lee, R. M., Loranty, M. M., Macdonald, R., Mann, P. J., Natali, S. M., Olefeldt, D., Pearson, P., Rec, A., Robards, M., Salmon, V. G., Sayedi, S. S., Schädel, C., … Zolkos, S. 2022. We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. Frontiers in Environmental Science, 10. https://www.frontiersin.org/article/10.3389/fenvs.2022.889428

[53] Talucci, A.C., Loranty, M.M., and Alexander, H.D., 2022. Spatial patterns of unburned refugia in Siberian larch forests during the exceptional 2020 fire season. Global Ecology and Biogeography, 31(10), 2041–2055. https://doi.org/10.1111/geb.13529

[52] Hewitt, R., Izbicki, B., Natali, S.M., Loranty, M.M., Alexander, H.D., Walker, X., and Mack, M.C. 2022. Increasing tree density accelerates stand-level nitrogen cycling at the taiga-tundra ecotone in northeastern Siberia. Ecosphere. 13(7), e4175. https://doi.org/10.1002/ecs2.4175

[51] Curasi, S.R., Fetcher, N., Hewitt, R., Lafleur, P., Loranty, M.M., Mack, M.C., May, J., Myers-Smith, I., Natali, S.M., Oberbauer, S., Parker, T., Sonnentag, O., Vargas, S.Z., Wullschleger, S.D., and Rocha A.V. 2022. Range shifts in a foundational sedge induce large Arctic ecosystem carbon losses and gains. Environmental Research Letters. 17(4) 045024 https://doi.org/10.1088/1748-9326/ac6005

[50] Curasi, S. R., Klupar, I., Loranty, M. M., & Rocha, A. V. 2022. An Open-Source, Durable, and Low-Cost Alternative to Commercially Available Soil Temperature Data Loggers. Sensors, 22(1), 148. https://doi.org/10.3390/s22010148

[49] Talucci, A.C., Loranty, M.M., & Alexander, H.D., 2022. Siberia taiga and tundra fire regimes from 2001-2020. Environmental Research Letters. 17(2) 025001 https://doi.org/10.1088/1748-9326/ac3f07

[48] Loranty, M.M., Alexander, H.D., Kropp, H., Talucci, A.C., and Webb, E.E., 2021. Siberian ecosystems as drivers of cryospheric climate feedbacks in the terrestrial Arctic. Frontiers in Climate 3(141) https://doi.org/10.3389/fclim.2021.730943

[47] Muzalevskiy, K., Ruzicka, R., Roy, A., Loranty, M.M., Vasiliev, A. 2021. The classification of frozen/thawed surface state of Arctic soil based on SMAP and GCOM-W1 brightness temperature observations at 1.4 GHz and 6.9 GHz. Remote Sensing Letters 12(11), 1073-1081. https://doi.org/10.1080/2150704X.2021.1963497

[46] Webb, E.E., Loranty, M.M., and Lichstein, J.W., 2021. Surface water, vegetation and fire as drivers of the Arctic-Boreal albedo feedback Environmental Research Letters 16(8), 084046. https://doi.org/10.1088/1748-9326/ac14ea

[45] Walker, X., Alexander, H.D., Berner, L. Boyd, M., Loranty, M.M., Natali, S.M., and Mack, M.C. 2021. Positive response of tree productivity to warming is reversed by increased tree density at Arctic treeline. Canadian Journal of Forest Research, 51(9), 1323-1338 https://doi.org/10.1139/cjfr-2020-0466

[44] Poyatos, R., and 100+ others including M.M. Loranty. 2021. Global transpiration from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 13(6), 2607–2649. https://doi.org/10.5194/essd-13-2607-2021

[43] Paulson, A.K., Peña, H., Alexander, H.D., Davydov, S.P., Loranty, M.M., Mack, M.C., and Natali, S.M. 2021. Understory plant diversity and composition across a post-fire tree density gradient in a Siberian Arctic boreal forest 2021. Canadian Journal of Forest Research. 51(5): 720-731. https://doi.org/10.1139/cjfr-2020-0483

[42] Kropp, H. Loranty, M.M. and 50+ others. 2021. Shallow soils are warmer under trees and small shrubs across Arctic and Boreal ecosystems Environmental Research Letters 16(1), 015001. doi.org/10.1088/1748-9326/abc994

[41] McCulloch, L.A., Kropp, H., Kholodov, A.K., Cardelus, C.L., Natali, S.M, and Loranty, M.M. 2020. Variation in fine root characteristics and nutrient dynamics across Alaskan ecosystems. Ecosystems, pp1-16. https://doi.org/10.1007/s10021-020-00583-8

[40] Talucci, A.C., Forbath, E., Kropp, H., Alexander, H.D., DeMarco, J., Paulson, A.K., Zimov, N.S., Zimov, S. and Loranty, M.M., 2020. Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing, 12(18), p.2970. https://doi.org/10.3390/rs12182970

[39] McLauchlan, K. K., P. E. Higuera, J. Miesel, B. M. Rogers, J. Schweitzer, J. K. Shuman, A. Tepley, J. M. Varner, T. T. Veblen, S. A. Adalsteinsson, J. K. Balch, P. Baker, E. Batllori, E. Bigio, P. Brando, M. Cattau, M. L. Chipman, J. Coen, R. Crandall, L. Daniels, N. Enright, W. S. Gross, B. J. Harvey, J. A. Hatten, S. Hermann, R. E. Hewitt, L. N. Kobziar, J. B. Landesmann, M. M. Loranty, S. Y. Maezumi, L. Mearns, M. Moritz, J. A. Myers, J. G. Pausas, A. F. A. Pellegrini, W. J. Platt, J. Roozeboom, H. Safford, F. Santos, R. M. Scheller, R. L. Sherriff, K. G. Smith, M. D. Smith, and A. C. Watts. In Press, Fire as a fundamental ecological process: research advances and frontiers. Journal of Ecology. 108(5), pp.2047-2069

[38] Myers-Smith, I., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., John, C., Andreu-Hayles, L., Angers-Blodin, S., Beck, P.S.A., Berner, L.T., Bhatt, U.S., Bjorkman, A., Blok, D., Bryn, A., Christiansen, C.T., Cornelissen, J.H.C., Cunliffe, A.M., Elmendorf, S.C., Forbes, B.C., Goetz, S.J., Hollister, R.D., de Jong, R., Loranty, M.M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T.C., Parmentier, F.W., Post, E.S., Schaepman-Strub, G., Stordal, F., Sullivan, P., Thomas, H.J.D., Tommervik, H., Treharne, T., Tweedie, C.E., Walker, D.A., Wilmking, M., and Wipf, S. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change, 10(2), pp.106-117. doi:10.1038/s41558-019-0688-1

[37] Davydov, S.P., Davydova, A., Schelchkova, M., Makarevich, R., Fyodorov-Dayvdov, D., Loranty, M.M., Boeskorov, G. 2020. Essential mineral nutrients of the high-latitude steppe vegetation and the herbivores of mammoth fauna. Quaternary Science Reviews, 228, p.106073. doi:10.1016/j.quascirev.2019.106073

[36] Natali, S., J.D. Watts, S. Potter, B.M. Rogers, S. Ludwig, A. Selbmann, P. Sullivan, B. Abbott, K. Arndt, A.A. Bloom, G. Celis, T. Christensen, C. Christiansen, R. Commane, E. Cooper, P.M. Crill, C.I. Czimczik, S. Davydov, J. Du, J. Egan, B. Elberling, S.E. Euskirchen, T. Friborg, H. Genet, J. Goodrich, P. Grogan, M. Helbig, E. Jafarov, J. Jastrow, A. Kalhori, Y. Kim, J.S. Kimball, L. Kutzbach, M. Lara, K. Larsen, B. Lee, Z. Liu, M.M. Loranty, M. Lund, M. Lupascu, N. Madani, A. Malhotra, R. Matamala, J. McFarland, A. McGuire, A. Michelsen, C. Minions, W. Oechel, D. Olefeldt, F. Parmentier, N. Pirk, B. Poulter, W. Quinton, F. Rezanezhad, D. Risk, T. Sachs, K. Schaefer, N. Schmidt, E. Schuur, P. Semenchuk, G. Shaver, O. Sonnentag, G. Starr, C. Treat, M. Waldrop, Y. Wang, J. Welker, C. Wille, X. Xu, Z. Zhang, Q. Zhuang, and D. Zona. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 9(11), 852-857, doi:10.1038/s41558-019-0592-8

[35] Contributing Author in: Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas, A. Mackintosh, J. Melbourne-Thomas, M.M.C. Muelbert, G. Ottersen, H. Pritchard, and E.A.G. Schuur, 2019: Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)].

[34] Kropp, H., Loranty, M.M., Natali, S.M., Kholodov, A.L., Alexander, H.D., Zimov, N.S., Mack, M.C. and Spawn, S.A., 2019. Tree density influences ecohydrological drivers of plant–water relations in a larch boreal forest in Siberia. Ecohydrology, 12(7), p.e2132. doi:10.1002/eco.2132

[33] Todt, M., Rutter, N., Fletcher, C.G., Wake, L.M., Bartlett, C.G., Essery, R., Jonas, T., Kropp, H., Loranty, M.M., Ohta, T., Webster, C., 2018. Simulation of longwave enhancement in boreal and montane forests. Journal of Geophysical Research-Atmospheres 123(24), 13-731. doi:10.1029/2018JD028719

[32] Loranty, M.M., Davydov, S.P., Kropp, H., Alexander, H.D., Mack, M.C., Natali, S.M., and Zimov, N.S., 2018. Vegetation indices do not capture forest cover dynamics in upland Siberian larch forests. Remote Sensing, 10(11), 1686. doi:10.3390/rs10111686

[31] Loranty, M.M., Abbott, B., Blok, D.,Douglas, T.A., Epstein, H.E., Forbes, B., Jones, B., Kholodov, A.K., Kropp, H., Malhotra, A., Mamet, S., Myers-Smith, I., Natali, S.M., O’Donnell, J., Phoenix, G., Rocha, A.V., Sonnentag, O., Tape, K., Walker, D.A. 2018. Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions Biogeosciences, 15(17), 5287–5313. doi:10.5194/bg-15-5287-2018

[30] Alexander, H.D., Natali, S.M., Loranty, M.M., Ludwig, S., Spektor, V., Davydov, S.P., Zimov, N.S., and Mack, M.C. 2018. Impacts of increased soil burn severity on larch forest regeneration on permafrost soils in far northeastern Siberia. Forest Ecology and Management, 417, 144–153. doi:10.1016/j.foreco.2018.03.008

[29] Loranty, M.M., Berner, L.T., Taber, E.C., Kropp, H., Natali, S.M., Alexander, H.D., Davydov, S.P., and Zimov, N.S., 2018 Understory vegetation controls on active layer dynamics and carbon dioxide fluxes in open-canopy Siberian larch forests. PLoS ONE, 13(3), e0194014–17. doi:10.1371/journal.pone.0194014

[28] Liu, H., McColl, K.A., Li, X., Derksen, C., Berg, A., Black, A., Euskirchen, E., Loranty, M.M., Pulliainen, J., Rautianen, K., Rowlandson, T., Roy, A., Royer, A., Langlois, A., Stephens, J., and Entekhabi, D., 2018. Validation of the SMAP Freeze/Thaw product using Categorical Triple Collocation. Remote Sensing of Environment, 205, 329–337. doi:10.1016/j.rse.2017.12.007

[27] Webb, E.E., Heard, K., Natali, S.M., Bunn, A., Alexander, H.D., Berner, L.T., Kholodov, A.L., Loranty, M.M., Schade, J., Spektor, V., and Zimov, N.S., 2017. Variability in above and belowground carbon stocks in a Siberian larch watershed. Biogeosciences, 14 (18), 4279-4294. doi:10.5194/bg-14-4279-2017

[26] Mamet, S.D., Chun, K.P., Kershaw, G.G.L., Loranty, M.M., and Kershaw, G.P., 2017. Linear thaw and non-linear areal loss of permafrost: reconciling climatic and non-climatic effects on palsa dynamics in the western Northwest Territories. 2017. Permafrost and Perigalcial Processes, doi:10.1002/ppp.1951

[25] Derksen, C., Xu, X., Dunbar, R.S., Colliander, A., Kim, Y., Kimball, J., Black, A., Euskirchen, E., Langlois, A., Loranty, M.M., Marsh, P. Rautianen, T., Roy, A., Royer, A., Stephens, J., 2017. Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sensing of Environment, 194, 48-62. doi:10.1016/j.rse.2017.03.007

[24] Kropp, H., Loranty, M.M., Alexander, H.D., Berner, L.T., Natali, S.M., and Spawn, S.A., 2017. Environmental constraints on transpiration and stomatal conductance in a Siberian Arctic boreal forest. Journal of Geophysical Research - Biogeosciences, 122(3), 487-497. doi:10.1002/2016JG003709

[23] Epstein, H.E., Bhatt, U.S., Raynolds, M.K., Walker, D.A., Forbes, B.C., Macias-Fauria, M., Loranty, M.M., Phoenix, G., and Bjerke, J. 2016: Tundra Greenness [in Arctic Report Card 2016], http://www.arctic.noaa.gov/Report-Card.

[22] Loranty, M.M., Liberman-Cribbin, W., Berner, L.T., Natali, S.M., Goetz, S.J., Alexander, H.D. and Kholodov, A.L., 2016. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environmental Research Letters, 11(9), 095008. doi:10.1088/1748-9326/11/9/095008

[21] Curasi, S.R., Loranty, M.M., and Natali, S.M., 2016. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape. Environmental Research Letters, 11(4), 045002. doi:10.1088/1748-9326/11/4/045002

[20] Berner, L.T., Alexander, H.D., Loranty, M.M., Ganzlin, P., Mack, M.C., Davydov, S.P. and Goetz, S.J., 2015. Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. Forest Ecology and Management, 337, pp.110-118. doi:10.1016/j.foreco.2014.10.027.

[19] Loranty, M.M., Natali, S.M., Berner, L.T., Goetz, S.J., Holmes, R.M., Davydov, S.P., Zimov, N.S. and Zimov, S.A., 2014. Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire. Journal of Geophysical Research: Biogeosciences, 119(11), pp.2144-2154. doi:10.1002/2014jg002730.

[18] Loranty, M.M., Berner, L.T., Goetz, S.J., Jin, Y. and Randerson, J.T., 2014. Vegetation controls on northern high latitude snow‐albedo feedback: observations and CMIP 5 model simulations. Global change biology, 20(2), pp.594-606. doi:10.1111/gcb.12391

[17] Pearson, R.G., Phillips, S.J., Loranty, M.M., Beck, P.S., Damoulas, T., Knight, S.J. and Goetz, S.J., 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature climate change, 3(7), pp.673-677. doi:10.1038/nclimate1858.

[16] Epstein, H.E., D.A. Walker et al and 21 others including M.M. Loranty, 2012, Vegetation [in Arctic Report Card 2012], http://www.arctic.noaa.gov/reportcard

[15] Rocha, A.V., Loranty, M.M., Higuera, P.E., Mack, M.C., Hu, F.S., Jones, B.M., Breen, A.L., Rastetter, E.B., Goetz, S.J. and Shaver, G.R., 2012. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environmental Research Letters, 7(4), p.044039. doi:10.1088/1748-9326/7/4/044039

[14] Berner, L.T., Beck, P.S.A., Loranty, M.M., Alexander, H.D., Mack, M.C. and Goetz, S.J., 2012. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences, 9(10), 3943-3959, doi:10.5194/bg-9-3943-2012.

[13] Alexander, H.D., Mack, M.C., Goetz, S., Loranty, M.M., Beck, P.S., Earl, K., Zimov, S., Davydov, S. and Thompson, C.C., 2012. Carbon accumulation patterns during post-fire succession in cajander larch (Larix cajanderi) forests of Siberia. Ecosystems, 15(7), pp.1065-1082. doi:10.1007/s10021-012-9567-6.

[12] Jin, Y., Randerson, J.T., Goetz, S.J., Beck, P.S., Loranty, M.M., and Goulden, M.L., 2012. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research: Biogeosciences, 117(G1). doi:10.1029/2011JG001886

[11] Mackay, D.S., Ewers, B.E., Loranty, M.M., Kruger, E.L. and Samanta, S., 2012. Bayesian analysis of canopy transpiration models: a test of posterior parameter means against measurements. Journal of Hydrology, 432, pp.75-83. doi:10.1016/j.jhydrol.2012.02.019.

[10] Loranty, M.M., and Goetz, S.J. 2012 Shrub expansion and climate feedbacks in Arctic tundra. Environmental Research Letters 7 011005 doi:10.1088/1748-9326/7/1/011005.

[9] Beck, P.S., Horning, N., Goetz, S.J., Loranty, M.M., and Tape, K.D., 2011. Shrub cover on the North Slope of Alaska: a circa 2000 baseline map. Arctic, Antarctic, and Alpine Research, 43(3), pp.355-363. doi: 10.1657/1938-4246-43.3.355.

[8] Beck, P.S., Goetz, S.J., Mack, M.C., Alexander, H.D., Jin, Y., Randerson, J.T., and Loranty, M.M., 2011. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Global Change Biology, 17(9), pp.2853-2866. doi:10.1111/j.1365-2486.2011.02412.x

[7] Loranty, M.M., Goetz, S.J. and Beck, P.S., 2011. Tundra vegetation effects on pan-Arctic albedo. Environmental Research Letters, 6(2), p.024014. doi:10.1088/1748-9326/6/2/024014

[6] Loranty, M.M., Goetz, S.J., Rastetter, E.B., Rocha, A.V., Shaver, G.R., Humphreys, E.R. and Lafleur, P.M., 2011. Scaling an instantaneous model of tundra NEE to the Arctic landscape. Ecosystems, 14(1), pp.76-93. doi:10.1007/s10021-010-9396-4

[5] Loranty, M.M., Mackay, D.S., Ewers, B.E., Traver, E. and Kruger, E.L., 2010. Competition for light between individual trees lowers reference canopy stomatal conductance: Results from a model. Journal of Geophysical Research: Biogeosciences, 115(G4). doi:10.1029/2010JG001377

[4] Mackay, D.S., Ewers, B.E., Loranty, M.M., and Kruger, E.L., 2010. On the representativeness of plot size and location for scaling transpiration from trees to a stand. Journal of Geophysical Research: Biogeosciences, 115(G2). doi:10.1029/2009JG001092

[3] Loranty, M.M., Mackay, D.S., Ewers, B.E., Traver, E. and Kruger, E.L., 2010. Contribution of competition for light to within‐species variability in stomatal conductance. Water Resources Research, 46(5). doi:10.1029/2009WR008125.

[2] Traver, E., Ewers, B.E., Mackay, D.S., and Loranty, M.M., 2010. Tree transpiration varies spatially in response to atmospheric but not edaphic conditions. Functional Ecology, 24, 273-282. doi: 10.1111/j.1365-2435.2009.01657.x

[1] Loranty, M.M., Mackay, D.S., Ewers, B.E., Adelman, J.D. and Kruger, E.L., 2008. Environmental drivers of spatial variation in whole‐tree transpiration in an aspen‐dominated upland‐to‐wetland forest gradient. Water Resources Research, 44(2). doi:10.1029/2007WR006272.